3.1914 \(\int \frac{(1-2 x)^{3/2}}{(2+3 x) (3+5 x)^2} \, dx\)

Optimal. Leaf size=77 \[ -\frac{11 \sqrt{1-2 x}}{5 (5 x+3)}-14 \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )+\frac{72}{5} \sqrt{\frac{11}{5}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

[Out]

(-11*Sqrt[1 - 2*x])/(5*(3 + 5*x)) - 14*Sqrt[7/3]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]] + (72*Sqrt[11/5]*ArcTanh[Sqr
t[5/11]*Sqrt[1 - 2*x]])/5

________________________________________________________________________________________

Rubi [A]  time = 0.0249822, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {98, 156, 63, 206} \[ -\frac{11 \sqrt{1-2 x}}{5 (5 x+3)}-14 \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )+\frac{72}{5} \sqrt{\frac{11}{5}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(3/2)/((2 + 3*x)*(3 + 5*x)^2),x]

[Out]

(-11*Sqrt[1 - 2*x])/(5*(3 + 5*x)) - 14*Sqrt[7/3]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]] + (72*Sqrt[11/5]*ArcTanh[Sqr
t[5/11]*Sqrt[1 - 2*x]])/5

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{3/2}}{(2+3 x) (3+5 x)^2} \, dx &=-\frac{11 \sqrt{1-2 x}}{5 (3+5 x)}-\frac{1}{5} \int \frac{57-37 x}{\sqrt{1-2 x} (2+3 x) (3+5 x)} \, dx\\ &=-\frac{11 \sqrt{1-2 x}}{5 (3+5 x)}+49 \int \frac{1}{\sqrt{1-2 x} (2+3 x)} \, dx-\frac{396}{5} \int \frac{1}{\sqrt{1-2 x} (3+5 x)} \, dx\\ &=-\frac{11 \sqrt{1-2 x}}{5 (3+5 x)}-49 \operatorname{Subst}\left (\int \frac{1}{\frac{7}{2}-\frac{3 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )+\frac{396}{5} \operatorname{Subst}\left (\int \frac{1}{\frac{11}{2}-\frac{5 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )\\ &=-\frac{11 \sqrt{1-2 x}}{5 (3+5 x)}-14 \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )+\frac{72}{5} \sqrt{\frac{11}{5}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0685395, size = 76, normalized size = 0.99 \[ \frac{1}{25} \left (72 \sqrt{55} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )-\frac{55 \sqrt{1-2 x}}{5 x+3}\right )-14 \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)*(3 + 5*x)^2),x]

[Out]

-14*Sqrt[7/3]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]] + ((-55*Sqrt[1 - 2*x])/(3 + 5*x) + 72*Sqrt[55]*ArcTanh[Sqrt[5/1
1]*Sqrt[1 - 2*x]])/25

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 54, normalized size = 0.7 \begin{align*} -{\frac{14\,\sqrt{21}}{3}{\it Artanh} \left ({\frac{\sqrt{21}}{7}\sqrt{1-2\,x}} \right ) }+{\frac{22}{25}\sqrt{1-2\,x} \left ( -2\,x-{\frac{6}{5}} \right ) ^{-1}}+{\frac{72\,\sqrt{55}}{25}{\it Artanh} \left ({\frac{\sqrt{55}}{11}\sqrt{1-2\,x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)/(2+3*x)/(3+5*x)^2,x)

[Out]

-14/3*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)+22/25*(1-2*x)^(1/2)/(-2*x-6/5)+72/25*arctanh(1/11*55^(1/2)*
(1-2*x)^(1/2))*55^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.54735, size = 120, normalized size = 1.56 \begin{align*} -\frac{36}{25} \, \sqrt{55} \log \left (-\frac{\sqrt{55} - 5 \, \sqrt{-2 \, x + 1}}{\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}}\right ) + \frac{7}{3} \, \sqrt{21} \log \left (-\frac{\sqrt{21} - 3 \, \sqrt{-2 \, x + 1}}{\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}}\right ) - \frac{11 \, \sqrt{-2 \, x + 1}}{5 \,{\left (5 \, x + 3\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)/(3+5*x)^2,x, algorithm="maxima")

[Out]

-36/25*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 7/3*sqrt(21)*log(-(sqrt(21
) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 11/5*sqrt(-2*x + 1)/(5*x + 3)

________________________________________________________________________________________

Fricas [A]  time = 1.57067, size = 297, normalized size = 3.86 \begin{align*} \frac{108 \, \sqrt{11} \sqrt{5}{\left (5 \, x + 3\right )} \log \left (-\frac{\sqrt{11} \sqrt{5} \sqrt{-2 \, x + 1} - 5 \, x + 8}{5 \, x + 3}\right ) + 175 \, \sqrt{7} \sqrt{3}{\left (5 \, x + 3\right )} \log \left (\frac{\sqrt{7} \sqrt{3} \sqrt{-2 \, x + 1} + 3 \, x - 5}{3 \, x + 2}\right ) - 165 \, \sqrt{-2 \, x + 1}}{75 \,{\left (5 \, x + 3\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)/(3+5*x)^2,x, algorithm="fricas")

[Out]

1/75*(108*sqrt(11)*sqrt(5)*(5*x + 3)*log(-(sqrt(11)*sqrt(5)*sqrt(-2*x + 1) - 5*x + 8)/(5*x + 3)) + 175*sqrt(7)
*sqrt(3)*(5*x + 3)*log((sqrt(7)*sqrt(3)*sqrt(-2*x + 1) + 3*x - 5)/(3*x + 2)) - 165*sqrt(-2*x + 1))/(5*x + 3)

________________________________________________________________________________________

Sympy [A]  time = 174.145, size = 233, normalized size = 3.03 \begin{align*} - \frac{484 \left (\begin{cases} \frac{\sqrt{55} \left (- \frac{\log{\left (\frac{\sqrt{55} \sqrt{1 - 2 x}}{11} - 1 \right )}}{4} + \frac{\log{\left (\frac{\sqrt{55} \sqrt{1 - 2 x}}{11} + 1 \right )}}{4} - \frac{1}{4 \left (\frac{\sqrt{55} \sqrt{1 - 2 x}}{11} + 1\right )} - \frac{1}{4 \left (\frac{\sqrt{55} \sqrt{1 - 2 x}}{11} - 1\right )}\right )}{605} & \text{for}\: x \leq \frac{1}{2} \wedge x > - \frac{3}{5} \end{cases}\right )}{5} + 98 \left (\begin{cases} - \frac{\sqrt{21} \operatorname{acoth}{\left (\frac{\sqrt{21} \sqrt{1 - 2 x}}{7} \right )}}{21} & \text{for}\: 2 x - 1 < - \frac{7}{3} \\- \frac{\sqrt{21} \operatorname{atanh}{\left (\frac{\sqrt{21} \sqrt{1 - 2 x}}{7} \right )}}{21} & \text{for}\: 2 x - 1 > - \frac{7}{3} \end{cases}\right ) - \frac{814 \left (\begin{cases} - \frac{\sqrt{55} \operatorname{acoth}{\left (\frac{\sqrt{55} \sqrt{1 - 2 x}}{11} \right )}}{55} & \text{for}\: 2 x - 1 < - \frac{11}{5} \\- \frac{\sqrt{55} \operatorname{atanh}{\left (\frac{\sqrt{55} \sqrt{1 - 2 x}}{11} \right )}}{55} & \text{for}\: 2 x - 1 > - \frac{11}{5} \end{cases}\right )}{5} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)/(2+3*x)/(3+5*x)**2,x)

[Out]

-484*Piecewise((sqrt(55)*(-log(sqrt(55)*sqrt(1 - 2*x)/11 - 1)/4 + log(sqrt(55)*sqrt(1 - 2*x)/11 + 1)/4 - 1/(4*
(sqrt(55)*sqrt(1 - 2*x)/11 + 1)) - 1/(4*(sqrt(55)*sqrt(1 - 2*x)/11 - 1)))/605, (x <= 1/2) & (x > -3/5)))/5 + 9
8*Piecewise((-sqrt(21)*acoth(sqrt(21)*sqrt(1 - 2*x)/7)/21, 2*x - 1 < -7/3), (-sqrt(21)*atanh(sqrt(21)*sqrt(1 -
 2*x)/7)/21, 2*x - 1 > -7/3)) - 814*Piecewise((-sqrt(55)*acoth(sqrt(55)*sqrt(1 - 2*x)/11)/55, 2*x - 1 < -11/5)
, (-sqrt(55)*atanh(sqrt(55)*sqrt(1 - 2*x)/11)/55, 2*x - 1 > -11/5))/5

________________________________________________________________________________________

Giac [A]  time = 2.52375, size = 128, normalized size = 1.66 \begin{align*} -\frac{36}{25} \, \sqrt{55} \log \left (\frac{{\left | -2 \, \sqrt{55} + 10 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}\right )}}\right ) + \frac{7}{3} \, \sqrt{21} \log \left (\frac{{\left | -2 \, \sqrt{21} + 6 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}\right )}}\right ) - \frac{11 \, \sqrt{-2 \, x + 1}}{5 \,{\left (5 \, x + 3\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)/(3+5*x)^2,x, algorithm="giac")

[Out]

-36/25*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 7/3*sqrt(21)*log
(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 11/5*sqrt(-2*x + 1)/(5*x + 3)